Reading Time: An initial 2 minutes to view BOTH sections

MATHEMATICS METHODS : UNITS 3 & 4, 2023 Test 1 – Differentiation Rules and Applications (10%) 3.1.7, 3.1.8, 3.1.10 – 3.1.16, 3.2.1 – 3.2.3						JO
Time Allowed First		First Name	Name Surname		Marks	15 marks
Circle your Teacher's Na		ier's Name:	Mrs Alvaro Mrs Greenaway Ms Narendranathan	Ms Chua Mr Luzuk Mr Tanday	Mrs F Mrs	Fraser-Jones Murray
Assessment Conditions: (N.B. Sufficient working out must be shown to gain full marks)						
* (Calculators:	Allowed				
* I	Formula She	et: Provideo	d			
* I	Notes:	Not Allo	wed			

PART B - CALCULATOR ASSUMED

QUESTION 8

(4 marks)

The gradient of the curve with equation $y = \frac{a}{x} + bx^2$ at the point with coordinates (3,6) is 7. Calculate the values of *a* and *b*.

$$6 = \frac{a}{3} + bx^{2}$$

$$6 = \frac{a}{3} + 9b$$

$$\checkmark \text{ Forms first equation}$$

$$y' = -\frac{a}{x^{2}} + 2bx$$

$$\checkmark \text{ Differentiates}$$

$$7 = -\frac{a}{9} + 6b$$

$$\checkmark \text{ Forms second equation}$$

a = -9b = 1 Solves and states values of *a* and *b*

QUESTION 9

b)

A man walks along a riverbank from point A to point B, a distance of x m, at a speed of 1.25 m/s. He then swims, at a speed of 1m/s, to a point D which is directly opposite point C.

The point *C* is 20 m downstream from *A*. DC = 10 m. $0 \le x \le 20$

a) Show that the time taken (t seconds) to go from A to D in this way is:

$$t(x) = \sqrt{100 + (20 - x)^2} + \frac{4x}{5}$$

Time for $A \rightarrow B$:
 $1.25 = \frac{x}{t_1}$
 $t_1 = 0.8x$
 $= \frac{4x}{5}$ \checkmark Expression for time for first leg
Dist $BD = \sqrt{(20 - x)^2 + 100}$ \checkmark Distance to swim
Time for $B \rightarrow D$:
 $1 = \frac{\sqrt{(20 - x)^2 + 100}}{t_2}$
 $t_2 = \sqrt{(20 - x)^2 + 100}$ \checkmark Expression for time for second leg
Therefore
 $t = \frac{4x}{5} + \sqrt{(20 - x)^2 + 100}$
Find $\frac{dt}{dx}$.
 $\frac{dt}{dx} = \frac{5x + 4\sqrt{x^2 - 40x + 500} - 100}{5\sqrt{x^2 - 40x + 500}} \checkmark$ Correct derivative (CAS)
OR

- c) Solve the equation $\frac{dt}{dx} = 0$ for $0 \le x \le 20$ $x = \frac{20}{3}$ \checkmark Correct value
- d) Graph t(x) for $0 \le x \le 20$ on the axes below, labelling key features:

e) Hence, find the minimum time to complete the journey and state where the man should leave the riverbank to start swimming.

The minimum time will be 22 seconds and the man should leave the bank 6.67m from A

- ✓ States minimum time
- $\checkmark\,$ States distance from A to leave the